Lovász–Saks–Schrijver ideals and coordinate sections of determinantal varieties
نویسندگان
چکیده
منابع مشابه
Quantum Determinantal Ideals
Introduction. Fix a base field k. The quantized coordinate ring of n×n matrices over k, denoted by q(Mn(k)), is a deformation of the classical coordinate ring of n×n matrices, (Mn(k)). As such, it is a k-algebra generated by n2 indeterminates Xij , for 1 ≤ i,j ≤ n, subject to relations which we state in (1.1). Here, q is a nonzero element of the field k. When q = 1, we recover (Mn(k)), which is...
متن کاملResultants of determinantal varieties
In this paper, a new kind of resultant, called the determinantal resultant, is introduced. This operator computes the projection of a determinantal variety under suitable hypothesis. As a direct generalization of the resultant of a very ample vector bundle [GKZ94], it corresponds to a necessary and sufficient condition so that a given morphism between two vector bundles on a projective variety ...
متن کاملKrs and Powers of Determinantal Ideals
The goal of this paper is to determine Gröbner bases of powers of determinantal ideals and to show that the Rees algebras of (products of) determinantal ideals are normal and CohenMacaulay if the characteristic of the base field is non-exceptional. Our main combinatorial result is a generalization of Schensted’s Theorem on the Knuth–Robinson–Schensted correspondence. Mathematics Subject Classif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra & Number Theory
سال: 2019
ISSN: 1944-7833,1937-0652
DOI: 10.2140/ant.2019.13.455